NUMERICAL SIMULATION OF THE DYNAMICS OF AN
INTENSE RELATIVISTIC BEAM OF CHARGED PARTICLES
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A method for the numerical simulation of stochastic processes in intense relativistic beams
of particles moving in electric and magnetic fields is described. A two-dimensional approx-
imation using "coarse particles" is considered, The action functions are first tabulated with
respect to three variables. The method combines high speed and good accuracy. The re-
sults of a simulation are presented,

1. Numerical simulation on a computer using coarse particles is an effective method of investigating
processes which occur in ensembles of particles [1-5], In the case of a relativistic beam the calculations
are complicated by the fact that the space-charge forces produced by the particles depend on their position
and on their velocity. The Coulomb interaction forces between the particles can be calculated using the
so-called action functions of the particles. The volume of calculations is proportional to the square of the
number of coarse ("computer”) particles, Hence, the permissible number of computer particles is of nec-
essity limited and in the best computers does not exceed several hundred. The memory of a computer is
fairly large and enables one to store a vast amount of data, which can be used to speed up the solution of
the equations of motion and of the field using suitable algorithms,

We will consider the propagation of particles of charge e and rest mass m, in a cylindrical region
consisting of a drift space and an interaction space in which interaction occurs with a traveling electro-
magnetic wave, (The boundary at the junction of the drift region and the interaction region is assumed to
be arbitrary and is the cross section in which the high-frequency electromagnetic wave is introduced, The
weak nonsynchronous interaction with this wave in the drift region is ighored.) It is assumed that in the
drift space bunches of particles are formed (in accordance with the injection algorithm) with certain as-
signed coordinate and velocity distribution functions. By assigning different distribution functions we can
study their effect on the processes, After drifting, the bunches arrive in the interaction region which is a
cylindrical waveguide containing irises. In the interaction region the beam is close to synchronism and
interacts strongly with the fundamental space harmonic of the traveling microwave field which has a wave-
length in free space X and a phase velocity vy, = 8wc (¢ is the velocity of light),

We will assume that the problem is axially symmetric, that the beam does not perturb the external
electromagnetic field, and that the longitudinal component of the external magnetic field depends only on
the longitudinal coordinate. The radiation of the particles is ignored. The computer particles of charge
Me and rest mass Mm; are represented in the form of infinitely thin rings, the radius of which can be var-
ied during the course of the simulation, The charge of the rings Me and the number of the injected parti-
cles n(0) are chosen in such a way that the current of the beam in the model is the same as in the physical
system. During the course of the simulation the particles may leave the region (for example, they may hit
the walls of the tube, the target, etc.). The number of particles remaining in the region at the instant of
time 7, will be denoted by n(T)= n(0).

At each instant of time 7 we calculate the space-charge field from the known coordinates and veloci-
ties of all the n(7) particles. Then, from the equations of motion we find the coordinates and velocities of
the particles at the instant of time 7 + AT,
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The equation of motion of a relativistic particle
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in a cylindrical system of coordinates {r, 6, z}, after changing to the dimensionless variables
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takes the form
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where the prime denotes differentiation with respect to t, and v is the Lorentz factor:
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The axial component Eg = 0, When changing from dimensionless field strength to dimensional field
strength they must be multiplied by the corresponding normalizing factors:
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We can add the following equation for the phase to Eqgs. (1.3):
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where ¢, is the phase of the wave of the external electromagnetic field at the input to the interaction space
¢, at the initial instant t = 0,

The fields E, B in the equation of motion (1.1) are made up of external fields E, and By, and the
space-charge fields Eg and Bg

E= Eu: ~E. B = Bw + Bs (1.6)
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where I; and I; are Bessel functions of imaginary argument, i, i, and Jp are unit vectors, and Sy, Epy, and
Bg depend only on £ and are given in tables, The expressions which include Ep,(¥) are components of the
E,; mode in the channel of a cylindrical waveguide with irises. When By, ~ 1 Egs. (1.7) simplify to

By, = E,, (8) lcos ¢i, - mnBysin ¢irl, By, = En(E)an sin ¢ (1.8)

The space-charge field at the point £;, 74, where a particle of number i {i =1, 2,..., n(t)] is situated,
is found by summing the fields produced by all the remaining particles j =1, 2,..., n(t), j =i, assuming
that the longitudinal component of the current density of the beam is predominant:
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Here a is the radius of the tube, and S; and S, are the action functions for an infinitely thin ring in an
ideally conducting cylindrical tube:
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In Eq. (1.11) j is the index of the ring (of the computer particle), which produces the field, i is the
index of a particle, on which the field acts, and Jy(vk) =0, and

xij = ha~'y; | & — &l (1.12)
Most of the computational time is required for calculating the space-charge field (1,9), since the
required number of operations is proportional to n(t),

2. The simulation is carried out with a constant step At, which is a compromise between accuracy
and speed of solution., When solving the equations of motion (1.3) we used Adams' extrapolation formula
for the velocities of each of the i =1, 2,..., n(t) particles, which enables one to calculate the right sides
uniquely at each step and which has an accuracy at each step of the order of (At)!, For &', for example,
we have

S (e 4+ AN =& (1) + At [ 231 Fei(t) — Y5 Fi (t — Ap + /e Fe;(t — 2A1) 2.1)

where the right sides Fgj(t — At), Fgi(t — 2At) of Eq. (1.3) are calculated in the preceding simulation steps
and then kept for the subsequent calculations. We similarly calculate n;'(t + At), oj(t + At).

To calculate the coordinate £; we use an expansion in a power series:
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with the remaining term of the order of (At)’, According to the formulas of numerical differentiation
() = Fy ()
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Substituting Eqgs. (2.3) into Eq. (2.2), we obtain
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We calculate nj(t + At) similarly. The phase ¢; is found from Eq. (1.5); the values of the integral
& (¢) are first tabulated for the whole of the interaction space, so that &[;(t)] can be calculated at eachstep
by interpolation using the tables, In the drift space £< £, we assume & (£) =0,

To calculate the coordinates, the velocities, and the phase of a particle at the instant of time t + At
we must know eleven quantities (§(t), £'(t), ..., F,(t — 2At)] for each particle. The capacity of the operative
memory of a computer of average class enables these quantities to be stored for several hundred particles.

In the first two steps of the simulation ("acceleration®), instead of the Adams' method we used Euler's
method for the velocity

ES (- Ay = B () - Fa () At (2.5)
[similarly for ny(t + At) and a(t + At)] and the power series
B (t = A1) = & (1) + & (DAL 4 Fy (0 (A0)? /2 (2.6)

for the coordinates [similarly for n;(t + At)].

To calculate the action function (1.11) we constructed a grid region with respect to the three variables
(3> nj,mij). Before starting the simulation we drew up tables of values of Sp (p = 0, 1) at the nodes of the
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/'ml'—"'Ti_-“ —*l—— 177 A grid, With respect to 1 (1.12) the step of the grid Ax was chosen to be
: i i constant and to be such that the whole of the bunch was covered by
i i /!' the grid: ‘
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where N,, is the number of nodes of the grid with respect to variable
¥, As far as the radius is concerned it is best to choose a grid the
step of which increases with distance from the axis, This enables

one to have more nodes and to calculate the field more accurately

in the region filled by the beam, since the beam is usually concen-
trated in the region of the axis of the system, Hence, the radius nodes
are chosen with a unit step with respect to the variable y, which is
related to n by the expression

N (b . ,) (e:;yu . 1) ().«; Ny 1)-1 (0 < ¥ < -‘\‘—r.) (2.8)

<

where Ny, is the number of nodes of the grid with respect to y. The
axis of the tube corresponds to y = 0, and the internal radius of the

iris b corresponds to y = Ny. The distance between neighboring nodes
with respect tothe variablen according to Eq. (2.8) increasesas exp(kyy).
By varying parameter ky, one can change the degree of nonuniformity
of the grid.

Tables of the action functions were constructed in practice with
respect to the variables yj, Y and Xjj at the nodes y;, y; = 0,1, 2,...,
Nn;xij =0,1,2,.,.,N,,. Sincethe functionS;is symmetrical with respect
to nj,nj, the table of So(¥i,¥jsXij) s only drawn up for values of yj =z yj. For
xjj = 0 we assume Sy(yi, ¥j, 0) =0, S¢(yi, ¥j, 0) =S(yi, ¥j» 1). The total num-
ber of nodes in the tables of Sy and §; is of the order of 1.5 (N, + 1)?

(N, +1).

During the simulation procedure with respect to the coordinates n,
njwe calculated yj and y;from Eq. (2.8), and we calculated xjj from Eq.
(2,7). The valuesof the action function Sp» which occur in Eq. (1.9),
at the points yj, yj, and Xjj were found using linear interpolation be-
tween the table components:
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where the superscript (0) denotes the integral part of the number, and the derivatives represent the dif-
ference between the action functions at the nodes which are adjacent with respect to the corresponding vari-
ables, since the distance between neighboring nodes Ayi(o) = ij(o) = Axij(o) =1, For values xij(°)> Ny, the
functions Sp(ni, My V»ij) are assumed to be zero,

The major part of the calculations using Egs, (1.9) and (2.9) can be carried out in advance, so that
the required number of operations is reduced considerably, This enables one to simulate important prac-
tical modes of operation on a computer of average class in an acceptable time,

3. The time taken to compute a single step on an M-220 computer increases from 27 sec for n = 160
to 432 sec for n = 400, Figures 1-3 show the results obtained, We injected a single-energy bunch with an
initial particle kinetic energy W, and a constant space-charge density p. For Fig. 1 the initial radius of
the beam was 1,37 em, and for Figs, 2 and 8 the initial radius was 1 cm, For a uniformly charged beam

o = Men ! (7N, &A% 3.1)

where £,,, 7m are the dimensionless length and the dimensionless maximum radius of a bunch, It was as-
sumed that over the whole interaction space By,t (¢) = const.
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Figure 1 shows the increase in the radius r = Any, of a proton beam due to the action of space~charge
forces when drifting in free space in the direction of axis. For this case W; =700 keV, p= 0,56 - 10~4 ¢/m8,
and n = 50, and the parameters of the grid were ky = 0,25, Ny = 13, and N, =25. In Fig, 1 the continuous
curve was calculated from the analytical relation given in [7], and the crosses represent the results of the
numerical experiment. The disagreement does not exceed 1%. Figure 2 shows the distribution density dN/
dw of the number of particles N(W) with respect to the energy W after passing through a drift of length4,5
cm; the initial energy W, = 50 keV, the focussing magnetic field B; = 3,522, and p=4.1- 10-% ¢/m? for curve
1 and 1.4-1073 C/m? for curve 2, Because of the acceleration of tie "leading® particles and the slowing of
the "trailing" particles of a bunch the initially single-energy bunch exhibits a spread in energy. As the
charge density increases, the energy spectrum broadens, A comparison of curves 1 and 2 (Fig. 2) shows
that an increase in the space~charge density by a factor of 3 causes an increase in the absolute energy
spread from 9 to 24 keV.

The repulsive Coulomb forces have a considerable effect on the transverse motion of the particles,
A suitable characteristic of the radial divergence of the beam is the quantity

5= \3 dndvg, mg=dn/d}

In Fig, 3curves 1 and 2 limit the region occupied by the representative points of the particles of the bunch*
passing through the drift space of length 5em, p = 1,410~ C/m?, B; =3.522, and W, =50keV for curve 1 and 200
keVforcurve 2, It canbe seenthatanincrease inthe initial energy of the particles W, by a factor of 4 leads
to a reduction in the area of the region occupied by the representative points of the particles of the bunch,
i.e., of the quantity o, by a factor of approximately 3.5. This is due to a reduction in the repulsive Coulomb
forces as the energy of the particles increases.

Consider the effect of space charge on the bunching of the particles in microwave electromagnetic
fields. The external high-frequency field was given by the parameters Ep,(£) = const = 2.97, By,(§) = const =
1. We injected a bunch with initial phase length Ao = 0,127 rad and energy W, = 125 keV, While the en-
ergy of the bunch was increasing to 1 MeV, the longitudinal Coulomb repulsion increased the phase length of
the bunchto 0,187 for an initial space-charge density p = 4.5+107% C/m?® and to 0,227 for p= 7.5+1073C/m®,

LITERATURE CITED

1. S. P. Lomnev, Calculation and Investigation of Electrophysical Apparatus and Phenomena on Digital
Computers {in Russian], Computational Center, Academy of Sciences of the USSR (1965),

2. V. A, Enal'skii and V. V, Osipov, Computer simulation of an accelerator process in a high-current
ion linear accelerator, Zh, Prikl, Mekh, Tekh, Fiz., No. 5 (1967),

3. G. W. Petersen and W. J. Gallagher, An analysis of travelling-wave prebunchers, IEEE Trans. Nucl,
Sci., 16, No. 3, Pt. 1 (1969).

4, C. B, Williams and M. H. MacGregor, Space charge effects in high current linear electron accelera-
tor injection systems, JEEE Trans, Nucl. Sci., 14, No. 3 (1967).

5. A, Benton, R, Chasman, and C, Agritellis, Computer calculations of the effect of space charge on
longitudinal beam dynamics in proton linear accelerators, IEEE Trans, Nucl. Sci., 14, No, 3 (1967),

6. I. S. Berezin and N, P, Zhidkov, Computational Methods [in Russian], Nauka, Moscow, (1966).

7. S. L. Molokovskii and A. D. Sushkov, Intense Electron and Ion Beams [in Russian], Energiya, Lenin-
grad (1972).

8. 1. M. Kapchinskii, Particle Dynamics in Resonance Linear Accelerators [in Russian], Atomizdat,
Moscow (1966).

*The term "representative points of the particles of the bunch" was introduced in [8] and denotes the rep-
resentation of the particles of a bunch in phase space coordinates {r, dr/dz},
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